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Abstract
We have generated a number of  forcompound data sets and programs
different types of applications in pharmaceutical research. These data sets and
programs were originally designed for our research projects and are made
publicly available. Without consulting original literature sources, it is difficult to
understand specific features of data sets and software tools, basic ideas
underlying their design, and applicability domains. Currently, 30 different
entries are available for download from our website. In this data article, we
provide an overview of the data and tools we make available and designate the
areas of research for which they should be useful. For selected data sets and
methods/programs, detailed descriptions are given. This article should help
interested readers to select data and tools for specific computational
investigations.
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Introduction
For compound data mining and the development and evaluation of 
chemoinformatics methods, public domain databases have become 
indispensable resources. Currently, major public repositories in-
clude PubChem1, BindingDB2, ChEMBL3, and ZINC4. While the 
former three databases contain compounds and bioactivity data, the 
latter collects commercially available compounds that are typically 
not annotated with activity information. Bioactivity data are usu-
ally obtained from original literature or patent sources. From these 
databases, screening data sets (PubChem) and compound activity 
classes (BindingDB, ChEMBL) can be extracted. Benchmarking of 
newly developed computational methods typically depends on the 
availability of such activity classes. Many compounds and measure-
ments are now also shared between these databases. In addition, 
there are also a number of smaller public and commercial com-
pound databases, which we do not consider here for the purpose of 
our discussion (with one exception; see below).

Importantly, depending on the scientific questions under investigation, it 
is often required to design and assemble data sets with specific features. 
Such data sets, which are usually reported as a part of a publication 
describing a computational analysis, a new method, or a benchmark in-
vestigation, are only infrequently made available to the public. Herein, 
we describe data sets originating from our laboratory that can be freely 
obtained. In addition, we also provide information about software tools 
developed by us that are available via the same website.

Objectives
The data sets and software tools reported herein have been gener-
ated for research activities that essentially fall into four different 
areas, as reported in Table 1. Area A comprises virtual screening 
and machine learning applications and is a core area of chemoin-
formatics. Areas B and C represent molecular selectivity analysis 
and visualization of structure-activity relationships (SARs), respec-
tively. Furthermore, area D summarizes data mining activities with 
a focus on structure-activity or -selectivity relationships. Areas B-D 
are equally relevant for medicinal chemistry (and also chemoinfor-
matics). In addition, especially area B is also relevant for chemical 
biology. By describing these tools in context, it is hoped that their 
accessibility to researchers in these areas might be further increased.

Materials and methods
Data sets reported herein were mostly, but not exclusively, assem-
bled from BindingDB and ChEMBL on the basis of defined selec-
tion criteria (as specified in the original publications). These sets 
contain compound structures, provided as SMILES5 strings or SD 
files6, and -whenever appropriate- associated bioactivity informa-
tion. Some of the older activity classes that are still available from 
our website have originated from the license-restricted Molecular 
Drug Data Report (MDDR)7. Therefore, these data sets do not con-
tain compound structures, but only compound identifier informa-
tion (because a user must obtain a license to access the database). 
We do no longer license commercial or otherwise restricted data-
bases and will remove corresponding entries from our download 
section in the near future (to ensure that all compounds are freely 
available). For the time being, all the information can be accessed. 
Scripts and programs available from our site generally represent a 

new computational method or analysis protocol and were imple-
mented in-house in different scripting and programming languages, 
as specified in the respective entries. Source code is provided. All 
data sets and programs can be obtained via following URL: http://
www.limes.uni-bonn.de/forschung/abteilungen/Bajorath/labweb-
site/downloads. The download section is updated several times per 
year with materials reported in new publications.

Results and discussion
Table 1 lists all 30 currently available entries including data sets 
and/or methods/programs. In each case, research area indices are 
assigned and publication information is provided. Eleven entries 
are assigned to area A and one, nine, and five entries to area B, C, 
and D, respectively. In addition, three entries are assigned to areas 
A and B and one to B and D. Compound data sets originated from 
22 different studies and methods from four. In addition, for four 
other investigations, both methods and data sets are provided.

For compound data sets, short descriptions are provided in Table 1. 
Furthermore, method/program descriptions are given in Table 2. In a 
number of instances, data entries contain sets of (filtered) compound 
activity classes (ACs) to ensure reproducibility of results reported 
in a specific publication. These sets were often directly taken from 
BindingDB, ChEMBL, the MDDR, or original literature sources 
and might not be of above-average interest. Nevertheless, for bench-
marking of virtual screening methods, these sets are useful. How-
ever, other data sets have been especially designed for novel applica-
tions. In the following, selected data sets and methods are described 
in more detail that might be of particular interest for investigators in 
the designated (or other) research areas. The indices of these entries 
are highlighted in Table 1 and Table 2.

Selected compound data sets
Entry 1: The ACs in this set are designed to have increasing intra-
class structural diversity and hence represent test cases of increas-
ing degrees of difficulty for the evaluation of ligand-based virtual 
screening (LBVS) methods.

Entry 4: In 26 so-called selectivity sets, compounds are organized 
on the basis of differential potency against pairs of targets as a meas-
ure of selectivity. These sets were originally designed to evaluate an 
extension of standard similarity searching termed selectivity search-
ing. The sets can be used as test cases for any methods that evaluate 
or predict molecular selectivity, similar to entries 5 and 6. As such, 
these data sets are relevant for computational chemical biology.

Entry 5: Selectivity sets focusing on the biogenic amine G protein 
coupled receptor (GPCR) family.

Entry 6: Eighteen sets with further refined selectivity criteria tar-
geting four different protein families.

Entry 7: Twenty-five different sets are provided that contain com-
pounds with increasing topological complexity and molecular size. 
These compound sets were designed to evaluate molecular complex-
ity effects in similarity searching. They can be utilized to examine 
the complexity and/or size dependence of a computational method.
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Table 1. Publicly available data sets and programs. A list of 30 entries providing data sets and/or methods/programs is shown. For each 
entry, research area indices are assigned as described in the text, i.e. area ‘A’ indicates virtual screening (similarity searching), fingerprint 
engineering and machine learning; area ‘B’ represents molecular selectivity analysis, area ‘C’ SAR visualization, and area ‘D’ structure-
activity or -selectivity relationship-oriented data mining. In addition, publication information is given. For compound data sets, short 
descriptions are provided. Selected compound data sets are highlighted in red and discussed in the text.

Entry Year Area Index Provided Data set description

1[8] 2007 A Data sets Nine activity classes (ACs) with increasing structural diversity

2[8] 2007 A Data sets A list of ~1.44 million ZINC compounds used for various virtual screening 
trials

3[9] 2007 A Methods –

4[10] 2007 B Data sets Four SD files including 26 selectivity sets where compounds are 
annotated with selectivity values for different tragets

5[11] 2008 A; B Data sets Seven compound selectivity sets containing 267 biogenic amine GPCR 
antagonists

6[12] 2008 A; B Data sets 18 selectivity sets involving targets from four protein families

7[13] 2008 A Data sets 25 data sets with compounds of increasing complexity and size

8[14] 2009 A Data sets A set of 242 compounds with hERG inhibitions

9[15] 2009 A; B Data sets A set of 243 ionotropic glutamate ion channel antagonists

10[16] 2009 C Data sets; 
Methods A sample data set consisting of 51 thrombin inhibitors

11[17] 2009 A Data sets 20 ACs assembled from the literature and 15 ACs collected from MDDR

12[18] 2010 A Data sets Eight ACs

13[19] 2010 B; D Methods –

14[20] 2010 C Data sets; 
Methods A sample data set containing 33 kinase inhibtors

15[21] 2010 C Methods –

16[22] 2010 C Data sets; 
Methods A sample data set containing 248 Cathepsin S inhibitors

17[23] 2010 D Data sets Two sets of MMPs identified from BindingDB and ChEMBL, respectively

18[24] 2010 C Data sets; 
Methods A sample data set consisting of 874 factor Xa inhibitors

19[25] 2010 A Data sets 17 target-directed scaffold sets where each set contains a minimum of 10 
distinct scaffolds and each scaffold represents five compounds

20[26] 2011 C Data sets A list of 10,489 GSK malaria screening hits

21[27] 2011 D Data sets A total of 458 target sets with scaffolds and scaffold hierarchies

22[28] 2011 C Data sets Four data sets containing compounds active against three or four targets

23[29] 2011 C Data sets A set of 881 factor Xa inhibitors

24[30] 2011 A Data sets 50 prioritized ACs for similarity search benchmarking

25[31] 2011 A Data sets 25 data sets from successful prospective ligand-based virtual screening 
applications

26[32] 2011 D Data sets A list of 26 conserved scaffolds in activity profile sequences of length four

27[33] 2011 A Methods –

28[34] 2011 D Data sets Two data sets with exclusive Ki and IC50 measurements

29[35] 2012 C Data sets Four ACs

30[36] 2012 D Data sets Five sets of activity cliffs representing different cliff types
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Selected methods and programs
Entry 10: A graphical data structure termed combinatorial analog 
graph (CAG) is introduced to systematically organize analog series 
on the basis of substitution patterns and identify subsets of analogs 
having high in SAR information content.

Entry 14: A further extended and refined CAG implementation for 
the study of SARs across multiple targets.

Entry 15: SARANEA (a semantic construct of SAR and “Araneae”, 
i.e., the scientific order of spiders) is a collection of different tools 
for graphical and numerical SAR analysis. It contains the network-
like similarity graph (NSG), an SAR network (reminiscent of “spider 
webs”) in which compounds are nodes and edges structural simi-
larity relationships. In addition, nodes are annotated with different 
levels of SAR information. Several NSG variants have been intro-
duced for different aspects of SAR exploration. The SARANEA tool 
collection was designed for large-scale SAR data mining and analy-
sis, comparison of global and local SAR features, and the study of 
structure-selectivity relationships.

Entry 16: A program to calculate and display three-dimensional activ-
ity landscapes of compound data sets. An activity landscape is defined 
as any graphical representation that integrates molecular similarity 
and activity relationships. A 3D activity landscape can be conceptual-
ized as a 2D projection of a chemical reference space (in which com-
pound dissimilarity increases with inter-compound distance) with an 
interpolated potency surface added as the third dimension.

Entry 18: The similarity-potency tree (SPT) is a graph represen-
tation that organizes compound neighborhoods in large data sets 
on the basis of structural nearest neighbor relationships and reveals 
chemically interpretable SAR information. This data structure can 
be understood as a compound-centric activity landscape view. A 
basic SPT implementation is also available as a part of SARANEA.

Entry 17: Sets of matched molecular pairs (MMPs) are given that 
were systematically extracted from BindingDB and ChEMBL. An 
MMP is defined as a pair of compounds that only differ by the ex-
change of a single fragment (substructure).

Entry 24: On the basis of systematic similarity search profiling of 
ChEMBL, 50 ACs were selected. These sets represent meaningful 
test cases for benchmarking of LBVS methods. The ACs were as-
sembled because they were neither too “easy” nor too “difficult” for 
standard similarity searching using different molecular fingerprints.

Entry 25: This database contains a collection of known active ref-
erence compounds, newly identified actives (hits), and screening 
database information extracted from original literature sources re-
porting prospective LBVS applications. Only studies were consid-
ered that provided sufficiently detailed information to reproduce the 
search calculations. These studies were identified in a systematic 
survey of published LBVS applications. The database provides an 
alternative benchmark system for LBVS. For example, on the basis 
of these compound sets, it can be determined whether a new meth-
odology is capable of reproducing the results of successful prospec-
tive virtual screens using other approaches (i.e., screens that have 
identified structurally novel and experimentally confirmed hits).

Entry 30: Sets of activity cliffs are provided that belong to five 
newly introduced structural categories. These cliffs were systemati-
cally extracted from ChEMBL (latest release). An activity cliff is 
defined as a pair of structurally similar or analogous compounds 
with a large difference in potency. Accordingly, activity cliffs typi-
cally represent a rich source of SAR information.

Limitations of data sets
Entries 1, 4–7, 9, 11, and 12 (assembled until 2010) only contain 
MDDR compound identifiers, but no structures, due to license re-
strictions, as commented on above.

Table 2. Description of programs and methods. Eight entries with methods/programs are listed. For each entry, a brief description is 
provided. Selected entries are highlighted in red and discussed in the text.

Entry Topic Description

3 Histogram filtering method A molecular similarity-based method for the identification of active compounds

10 Combinatorial analog graph (CAG)
A methodology that systematically organizes compound analogue series according 
to substitution sites and identifies combinations of sites that determine SAR 
discontinuity

13 Target-selectivity patterns of scaffolds An data mining analysis to identify target-selective scaffolds and their 
corresponding target-selectivity patterns

14 Multi-target CAG A methodology for the study of multi-target SARs and identification of substitution 
sites in analogue series

15 SARANEA A freely available program to mine structure-activity and selectivity relationship 
information in compound data sets

16 3D activity landscape A computational approach to derive 3D activity landscapes for compound data 
sets

18 Similarity potency tree (SPT) An intuitive method for visualizing local SARs and prioritizing subsets of 
compounds of high structural similarity and high SAR information content

27 Scaffold distance function A quantitative measure of structural distance between molecular scaffolds
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Entry 27: “Scaffold hopping”, i.e., the detection of active compounds 
having different structural frameworks (core structures), is the ulti-
mate goal of LBVS and its primary measure of success. However, 
the evaluation of the scaffold hopping potential of different LBVS 
methods is complicated by the fact that scaffold hops can involve 
similar or different core structures, which is generally not taken into 
account in the statistical assessment of benchmark investigations. An 
algorithm is presented that calculates the structural distance between 
any two scaffolds, regardless of their chemical composition or size. 
Application of this method makes it possible to quantify the degree 
of difficulty involved in computational scaffold hopping exercises.

Conclusions
Herein we have given an overview of specialized compound data 
sets and methods/programs that have originated from different re-
search projects in our laboratory and that are made freely available 
to others with interests in chemoinformatics, computational medici-
nal chemistry, and chemical biology. These tools were presented 
and described in context. We hope that this report will further alert 
investigators in our and other scientific fields to available resources 
for specific computational applications and help to select data sets 

and tools that are relevant for given research topics. It is also hoped 
that the introduced methodological concepts will further evolve 
through wide use by others.
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different questions. As the data may be useful for such related questions, Considering that literature
searches are the primary method to search such data, I find it worthwhile to make datasets more widely
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the URL giving access to the data should be included. A similar abstract section appears in papers in the
journal Bioinformatics.
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